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Abstract26

Measurements obtained during the NASA TRACE-P experiment are used in conjunction with 27
regional modeling analysis to evaluate emission estimates for Asia. A comparison between the 28
modeled values and the observations is one method to evaluate emissions. Based on such 29
analysis it is concluded that the inventory performs well for the light alkanes, CO, ethyne, SO2,30
NOx. Furthermore, based on model skill in predicting important photochemical species such as 31
O3, HCHO, OH, HO2, and HNO3, it is found that the emissions inventories are of sufficient 32
quality to support preliminary studies of ozone production. These are important finding in light 33
of the fact that emission estimates for many species (such as speciated NMHCs and BC) for this 34
region have only recently been estimated and are highly uncertain.  Using a classification of the 35
measurements built upon trajectory analysis, we compare observed species distributions, and 36
ratios of species, to those modeled, and to ratios estimated from the emissions inventory. It is 37
shown that this technique can reconstruct a spatial distribution of propane/benzene that looks 38
remarkably similar to that calculated from the emissions inventory. A major discrepancy between 39
modeled and observed behavior is found in the Yellow Sea, where modeled values are 40
systematically under-predicted. The integrated analysis suggests that this may be related to an 41
under-estimation of emissions from the domestic sector. The emission is further tested by 42
comparing observed and measured species ratios in identified megacity plumes. Many of the 43
model derived ratios (e.g., BC/CO, SOx/C2H2) fall within ~25% of those observed, and all fall 44
outside of a factor of 2.5. 45

46
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INDEX TERMS: 0305 Aerosols and particles; 0322 Constituent sources and sinks; 0345 1

Pollution—urban and regional; 0365 Troposphere—composition and chemistry 2

3

1. Introduction 4

5

Developing accurate emission estimates is critical to atmospheric chemistry studies and to 6

the development of environmental management strategies (NRC, 1991). However, quantifying 7

emissions is difficult, as the estimates depend on the quantity and quality of the fuel used, the 8

manner in which it is consumed, and what control technologies are utilized. In developed regions 9

such as North America and Europe, emission estimates have been under development for several 10

decades, and while estimates of certain species are believed to fairly certain (e.g., SO211

emissions), others still remain problematic (e.g., NMHC from industrial sources). Further 12

complicating the issue is that the chemistry of the atmosphere is controlled by total emissions, so 13

natural emissions such as biogenic emissions, as well as those from biomass burning, must be 14

quantified.15

16

Emission estimates for East Asia have only recently been estimated. A detailed inventory of 17

air pollutant emissions in Asia in the year 2000 has been developed to support atmospheric 18

modeling and analysis of observations taken during the NASA TRACE-P (Transport and 19

Chemical Evolution over the Pacific) Mission and ACE-Asia (Asian Pacific Regional Aerosol 20

Characterization Experiment) funded by NSF and NOAA. The details of the inventory 21

development, estimates of uncertainties, and a summary of previous emission estimates are 22

presented in Streets et al., (this issue). These emission estimates are uncertain, and the further 23

refinement and improvement requires their evaluation using observations. Unfortunately, 24

comprehensive measurements of atmospheric composition that can be used to evaluate emission 25

estimates are often lacking.  26

27

Measurements obtained during the NASA TRACE-P experiment provide a means to evaluate 28

the quality of the estimated emissions. In this paper we integrate the aircraft measurements with 29

regional-scale modeling techniques to evaluate and characterize regional features of Asian 30

emissions. The standard use of models to assess emissions is to start with an emissions inventory 31
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constructed from activity data and emission factors (i.e., a bottom-up approach), then run the 1

model in the forward mode and compare predicted values with the observations, and then 2

attempt to draw inferences about the emissions inventory from the degree of agreement between 3

the predicted and observed values; i.e., 4

emissions ���� model ���� predicted-fields ���� compare predicted with observed ���� emission inferences 5
The sequence can of course be reversed, starting with the observations, and then using the model 6

to estimate the emissions needed in order to have the model predicted fields match (in some 7

optimal manner) the observations (i.e., inverse emissions modeling). The inverted emissions can 8

then be compared with the a priori (bottom-up) estimate and inferences drawn (e.g., Kasibhatla 9

et al., 2003; Palmer et al., 2003). In this paper we explore additional ways to combine 10

observations and models in an attempt to infer additional information about the quality of 11

estimated Asian emissions.   12

13

The paper is structured as follows. In Section 2 the analysis methods used are described. We 14

then compare the calculated concentrations using the estimated emissions with the aircraft 15

observations (Section 3.1). This provides a general assessment of the ability of the inventory to 16

represent the observed trace gas distributions. In Sections 3.2-3.4, trajectory analysis techniques 17

are used to classify the observations by source region, and along with the observations used to 18

reconstruct spatial distributions of trace species. Results from this analysis are compared with 19

model derived values and to regional estimates of emissions. This analysis provides additional 20

insights into regional features, and identifies areas where the emissions inventory may be 21

deficient. In the Section 3.5, the emissions are further tested by comparing observed and 22

measured species ratios in identified megacity plumes. The paper concludes with a summary of 23

major findings, and a discussion of how the analysis can be extended to further evaluate and 24

enhance the quality of emission estimates. 25

26

2. Analysis Methodology 27

28

In this paper results from the regional model, CFORS/STEM-2K1, are used to evaluate the 29

emission estimates and to characterize regional features.  CFORS is a multi-tracer, on-line, 30

system built within the RAMS mesoscale meteorological model (Pielke et al., 1992). An 31
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important feature of CFORS is that multiple tracers are run on-line in RAMS, so that all the on-1

line meteorological information such as 3-D winds, boundary-layer turbulence, surface fluxes 2

and precipitation amount are directly used by the tracer model at every time step. As a result, 3

CFORS produces with high time resolution 3-dimensional fields of tracer distributions and major 4

meteorological parameters. An important aspect of the CFORS system is that emissions 5

evaluation and analysis are intimately coupled to the modeling activities. CFORS includes a 6

wide variety of tracers to help characterize air masses. These include: 1) important anthropogenic 7

species (SO2/SO4, CO, black carbon, organic carbon, fast and slow reacting hydrocarbons, and 8

NOx); 2) species of natural origin (yellow sand, sea salt, radon, volcanic SO2); and 3) markers for 9

biomass burning (CO, black carbon, and organic carbon). In the analysis of the TRACE-P 10

observations, the CFORS system was applied in hind cast mode using ECMWF global 11

meteorological data set (6 hour interval with 1°×1° resolution), analyzed weekly SST (sea 12

surface temperature) data, and observed monthly snow-cover information as the boundary 13

conditions for the RAMS calculations.14

15

The meteorological fields, and those emissions estimated in an on-line manner inside of 16

CFORS, were used to drive the STEM-2K1 comprehensive chemical transport model (CTM), 17

which then produced estimated fields of primary and secondary chemical and aerosol 18

constituents. The important new features in STEM-2K1 include: i) the use of the SAPRC99 19

chemical mechanism (Carter 2000), which consists of 93 species and 225 reactions; ii) the 20

integration of the chemical mechanism using and the implicit second order Rosenbrock method 21

(Verwer et al 1997); the calculation of photolysis rates on-line, considering the influences of 22

cloud, aerosol and gas-phase absorptions due to O3, SO2 and NO2, using the NCAR Tropospheric 23

Ultraviolet-Visible (TUV) radiation model (Madronich, 1999); and iv) the extension of the 24

aerosol calculations to include optical information (e.g., extinction) in addition to mass, size and 25

composition. Details regarding the radiative transfer calculations are presented in Tang et al., 26

(this issue, a). Complete details regarding the model used can be found in Uno et al., (2002), and 27

Carmichael et al. (this issue).28

29

The anthropogenic emission inventories (SOx, NOx, CO, CO2, NH3, Black Carbon, Organic 30

Carbon and Hydrocarbons) used in this paper were prepared specifically for the TRACE-P and 31
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Ace-Asia experiments. A unique aspect of this bottom-up inventory is that it is driven by 1

regional-specific information on fuels and activity. Biofuels and fossil fuels can be tracked 2

separately, as can emissions from various economic sectors (e.g., domestic, transport, power 3

generation, industrial). Emissions from specific regions (administrative units where specific 4

activity and fuel data were collected) and even megacities can be isolated. The details of the 5

inventory are presented in Streets et al., and Woo et al., (this issue). Another important source of 6

aerosols and trace gases in the springtime in Asia is biomass burning. Daily averaged CO, BC 7

and OC emission estimates were prepared based on the analysis of daily AVHRR fire counts as 8

discussed by Streets et al. (2003) and Woo et al., (this issue).  Volcanoes are one of the major 9

sources of sulfur dioxide in Asia.  Estimated volcanic SO2 emission for the major active 10

volcanoes within the modeling domain are included in the analysis. During TRACE-P large 11

quantities of SO2 were emitted  (as much as 10 million ton-SO2/year) from the Miyakejima 12

Island (Mt. Oyama) just south of Tokyo (Yoshino et al., 2002). Figure 1 shows the 13

CFORS/STEM-2K1 domain of analysis, along with the megacities included in the analysis. Also 14

shown are the emission ratios of various species for Shanghai, Tokyo and Qingdao. There is 15

significant regional variability in the estimated emissions, which reflects local economic activity 16

and emission control technology. In this paper we explore ways to utilize the Trace-P 17

observations, along with the models, to identify and evaluate these regional emission signals. 18

19

Various analyses were performed in the evaluation of emissions. One approach was to 20

directly compare results from model simulations using our estimated emissions with the aircraft 21

observations. For these comparisons the model was sampled along 12 DC-8 and 12 P-3B flight 22

paths at 5-minute intervals and compared to the measured values in the 5-minute merged data set 23

(~2200 points). The merged data set consists of all measurements taken on the aircraft combined 24

together in a single data set with common and uniform time intervals, and consistent formats. 25

Model results were interpolated to the exact times and locations of the aircraft measurements. 26

Since the model results are driven by the emissions, the degree of agreement between the 27

modeled values and the observations provides an evaluation of the emissions. If the model were 28

perfect (and of course it is not), then this comparison would provide a direct test of the 29

emissions, and agreement would imply that the emissions are quantitatively correct, and 30

disagreement would indicate errors in the emissions. In practice models are imperfect, so 31
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disagreements (as well as agreements) are a convoluted combination of model, measurement and 1

emission errors. In this paper the comparisons were restricted to observations below 2 km in 2

order to maximize the influence of the local sources, and to minimize the impacts of model 3

deficiencies associated with where and when the air mass was lifted by convection, and errors 4

associated with the location and timing of biomass emissions. As discussed in Kiley et al. (this5

issue), the most significant differences between results calculated by the seven CTMs used 6

during TRACE-P, and the observations, occurred in outflow regions, above ~ 2 km.  7

8

The second approach was to classify the aircraft measurements by source region using 9

trajectory analysis. Back-trajectories were calculated every 5-minutes along the flight paths using 10

the 3-dimensional RAMS meteorological fields, and the number of times the trajectories passed 11

over specific regions of interest were counted (see Figure 2).  For emissions-related 12

comparisons, the analysis was limited to locations along the back-trajectories that were within 2 13

km of the surface, since these are the air masses most likely to be influenced by the regional 14

emissions. The statistics arising from this analysis for all flights using 5-day back-trajectories are 15

presented in Figure 2. These data were further classified for specific analysis. For example, for 16

studying megacity emissions, the data were further classified into measurement periods under 17

influence of emissions from specific megacities. These results are presented in Figure 3. This 18

analysis also provides an estimate of the time along the back trajectory since the air mass 19

encountered the urban environment. This analysis identified many opportunities to characterize 20

emissions from large cities. For example, air masses that passed over Shanghai were identified 21

more than 170 times, and ~ 90 of these had travel times of less than 1 day. Please note that all 22

encounters along the back-trajectory were counted and that a single back-trajectory could 23

encounter more than one designated city (but not at the same time). Using this classification of 24

the measurements, observed species distributions, and ratios of species, were compared to those 25

modeled, and to ratios estimated from the emissions inventory. 26

27

3. Results and Discussion 28

3.1 Mission-Wide Results 29

A comprehensive comparison of all the modeled results with observed values during 30

TRACE-P is presented in Carmichael et al., (this issue). The details of this analysis are not 31
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repeated here. However, a comparison of the observations taken at flight altitudes below 2 km 1

with calculated values is presented in Table 1. Most mean values calculated by the model were 2

within ~ +/- 30% of the observed values for all the parameters shown. A comprehensive 3

comparison of modeled results with observed values during TRACE-P is presented in 4

Carmichael et al., (this issue). The results fin Table 1, along with those presented in Carmichael 5

et al. (this issue) show that the model performs well for the light alkanes, CO, ethyne, SO2, NOx.6

Furthermore, based on model skill (as measured by means and correlation coefficients) in 7

predicting important photochemical species such as O3, HCHO, OH, HO2, and HNO3, it is 8

concluded that the emission inventories are of sufficient quality to support preliminary studies of 9

ozone production. These are important findings in light of the fact that emission estimates for 10

many species (such as speciated NMHCs and BC) for this region have only recently been 11

estimated and are highly uncertain (cf, Streets et al., this issue and references there-in). The 12

uncertainty of these emissions was estimated by error analysis of each emitting sub-sector and by 13

combining the coefficients of variation (CV, or the standard deviation divided by the mean) of 14

the contributing factors. The estimated overall uncertainty in emissions for all of Asia, ranked in 15

increasing order of uncertainty and measured as 95% confidence intervals are: ±16% (SO2),16

±31% (CO2), ±37% (NOx), ±65% (CH4), ±72% (NH3), ±130% (NMVOC), ±185% (CO), ±360% 17

(BC), and ±450% (OC). However, while the model results clearly encompass the observations 18

when these uncertainties are taken into consideration, it is important to note that the model can at 19

best explain only ~65% of the variability seen in the observations. This inability to explain the 20

variability is due in part to inventory deficiencies in magnitude and/or spatial and temporal 21

distributions.22

23

Below additional ways to combine observations together with the model information to 24

further test various aspects of the emissions inventory are explored.  25

26

3.2 Regional Emission Signals27

Asian emissions show strong regional differences as discussed in Woo et al., (this issue).28

These differences reflect in large part differences in the contribution of fossil fuels, biofuels and 29

biomass (open) burning. This can be illustrated by looking at ratios of various species. One 30

example is shown in Figure 4, where propane to benzene ratios (moles of propane emitted in 31
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March /moles of benzene emitted in March) calculated from the total emissions are presented.  1

The emissions show a strong south to north gradient in this ratio, with low values indicating 2

regions with large biomass burning sources, intermediate values reflecting a blend of biomass 3

and biofuel usage, and the largest values reflecting highly industrial regions dominated by fossil 4

fuel usage.  5

6

Propane and benzene have similar loss rates against reaction with OH (Carter 2000) and are 7

inefficiently removed by wet removal processes; thus changes in their ratio should reflect most 8

strongly differences in emissions. Under these conditions, then the aircraft measurements can be 9

used to back-calculate regional distributions. To test this hypothesis 5-day back-trajectories were 10

calculated using the three-dimensional RAMS-derived meteorological fields for each 5-minute 11

segment of the DC-8 and P-3B flights, and the trajectories classified according to the propane to 12

benzene ratio. For each trajectory it was assumed that the observed value of propane/benzene for 13

that time period remained constant for the entire path along the trajectory, and that each grid cell 14

where the trajectory passed below 2 km was assigned this value. The spatial distribution of 15

propane/benzene when each grid cell was averaged over all flights is presented in Figure 4-b.16

The reconstructed distribution based on observations looks very similar to that calculated from 17

the emissions inventory (Figure 4-a), and the reconstruction captures the dominant regional 18

signals. The results presented in Figure 4 are shown in terms of the administrative regions used 19

in compiling emission inventories. For subsequent use in modeling analysis, the emissions within 20

a region were allocated to a finer spatial grid (1o by 1o) using surrogate data (e.g., population 21

distributions) as discussed in Woo et al. (this issue). The trajectory analysis was performed on 22

this finer grid, and then values averaged within the region to produce the results shown in Figure 23

4-b.24

25

There are some peculiarities associated with this analysis. By the nature of the analysis only 26

the largest signals are captured. For example the Hong Kong and Taiwan signals are not 27

retrieved as they are surrounded by large regions with higher absolute emissions with lower 28

propane/benzene values. For the same reasons trajectories in the direction of Beijing pick up the 29

large signal from this region, but assign this same value to all trajectories as they move farther to 30

the west, leading to an overestimation of the ratios in the western provinces.  Similarly, for the 31
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Philippines there are few trajectories that pass over this country (see Figure 2), and those that do 1

also tend to have passed over Hong Kong and surrounding areas, and thus have been imprinted 2

with the higher emission ratios. These aspects of the analysis could be improved by restricting 3

the analysis to 2 or 3-day back trajectories, and adding some a-priori information, such as 4

population density, to help further classify the trajectory segments used in the reconstruction. 5

Furthermore, this analysis works best using ratios of species with similar chemical reaction loss 6

rates with respect to OH, and that have some degree of spatial homogeneity within regions, as 7

mixing effects as well as differences in reaction rates, result in changes in the ratio along the 8

trajectory. This is discussed in more detail later. 9

10

The regional variation in the ratios contains important information about source categories. 11

For example the ethane/propane ratios in the total emissions in Asia vary from ~ 1- 6 (Figure 5).12

The ethane/propane values for specific emission categories also vary significantly, as shown in 13

Table 2. Biomass burning in SE Asia has a value of 8, biofuel combustion 2.3, and 14

transportation 0.5. The importance of these activities is reflected in the aggregated regional 15

emissions. SE Asia has the largest value reflecting the dominant role of biomass burning (Tang 16

et al., this issue, b). The importance of biofuels in Central China, and the dominating role of 17

industrial and transportation in South Korea and Japan are also clearly depicted in the regional 18

emissions.19

20

The observed relationship between ethane and propane for the DC-8 and P-3B flights are 21

shown in Figure 6, along with the predicted values. As discussed previously and shown in Table 22

1, the model is able to accurately estimate the ambient levels of ethane and propane. However 23

when viewed together, the model predicts a much more linear relationship than that observed. 24

The trajectory analysis indicates that many of the low values are associated with trajectories from 25

SE Asia. These results suggest that biomass burning emissions in SE Asia may be 26

underestimated, or that the emission factors for ethane and propane (and other NMHC species) 27

for biomass burning in SE Asia may be different from those used to build the emissions 28

inventory.  As discussed previously, and as reflected in the uncertainty in the emission estimates, 29

additional information on emission factors and burning activity in SE Asia is needed in order to 30

improve biomass burning emissions.  Furthermore, inferring information about biomass burning 31
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from SE Asia using the Trace-P data is a challenge as the air masses from this region were 3-5 1

days old by the time they were observed.  Dilution of the biomass signals, mixing with other 2

sources, and errors in trajectories, all add to the uncertainties. None the less, results presented in 3

this paper, as well as chemical mass balance analysis using this data set (Woo et al, this issue)4

suggest that useful information regarding biomass emissions can be obtained from the Trace-P 5

data.6

7

3.3 Observation-Based Reconstruction of Concentration Fields 8

Further insights into the relationship between emissions and the observed-modeled behavior 9

can be seen by looking at scatter-plots of the predicted and observed CO, as shown in Figure 7.10

All data points from the 5-minute merged data sets for the DC-8 and P-3B for East Asia flights 11

are shown. The points identified in red are measurements with CO > 400 ppbv, and the back-12

trajectories associated with these data points are also shown. Most of the CO> 400 ppbv points 13

are associated with westerly winds and descending trajectories that passed over east-central 14

China before traveling into the Yellow Sea. For these trajectories the model systematically 15

under-predicts (not only CO, but ethyne, ethane, BC, etc.)  The under-prediction of CO 16

concentrations at low altitudes in the Yellow Sea is an important observation, and is also seen in 17

a variety of global and regional models used in TRACE-P analysis (see Kiley et al., this issue).18

These very high values are associated with distinct plume-like features, which are not resolved in 19

models using an 80 km grid resolution.  To study the effect of model resolution calculations were 20

also performed using a 16 km horizontal grid spacing. These calculations showed that resolution 21

could have a big impact on species that are emitted from large point sources (such as NOx and 22

SO2). However, there is little CO emitted from large points sources such as those related to 23

power generation, and the increased resolution did not significantly improve the CO calculations 24

in this region. So it is necessary to investigate whether this under-prediction of CO in the Yellow 25

Sea reflects inaccuracies in the emissions. 26

27

The average values of the observed CO for flight altitudes below 2 km are also shown 28

(Figure 8-a), along with the model calculated monthly averaged CO distribution for the lowest 2 29

km (Figure 8-b). It is important to point out the differences between these plots. The values 30

shown in Figure 8-a were calculated by binning the observed data into a spatial (horizontal and 31
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vertical) grid, and then averaging all the observed values (for the heights below 2 km). The 1

modeled derived fields (0-2 km) shown in Figure 8-b, are the monthly mean distributions based 2

on averaging all values time periods within the month (and not just times when there was an 3

aircraft observation). Clear differences are seen between the monthly mean and the mission-4

averaged CO values in the Yellow Sea. These reflect the fact that the aircraft missions selectively 5

sampled outflow associated with strong frontal activity. These events have the highest 6

concentrations, but occur with synoptic frequency (every 3-5 days).  7

8

Using the back-trajectory technique discussed previously, the spatial distributions of various 9

species were reconstructed using the aircraft observed species concentrations. The spatial 10

distribution of observed CO when each grid cell was averaged over all flights is presented in 11

Figure 8-c. Shown are results for each 80 km horizontal grid used in the meteorological and 12

chemical models. The observation-based reconstructed CO field displays many of the important 13

features that appear in the model calculated monthly averaged fields (Figure 8-b). This 14

comparison between the observation-based reconstruction and results from the forward model 15

run of the CTM provides an additional evaluation of the emissions. In this comparison both 16

approaches used the same meteorological fields, so differences in the distributions should reflect 17

discrepancies between the estimated and actual magnitude and/or spatial distribution of the 18

emissions. In both fields the highest values are from air masses associated with the biomass 19

burning areas of Southeast Asia, the biomass and fossil fuel regions of central China, and the 20

industrial regions between Shanghai and Beijing. To quantify this analysis, a model-based CO 21

distribution was reconstructed using the calculated values along the flight paths instead of the 22

observations. The mean bias between the model and the observation-based reconstruction is 23

shown in Figure 8-d. Interesting patterns emerge. For example there are widespread regions of 24

good agreement (biases less than +/- 30ppb). There is also a pattern of high and low bias in the 25

biomass-burning region of SE Asia. This pattern reflects sub-regional inaccuracies in the spatial 26

and temporal distribution of biomass burning emissions, and inadequacies in model transport 27

associated with convective lifting and orographic effects in this region.  The sub-regional 28

patterns in biomass burning in SE Asia are highly uncertain as discussed by Woo et al., (this 29

issue) A persistent negative (under prediction) bias for CO shows up in Central China between 30
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Chongqing and Shanghai. This region is one with large estimated emissions, and this region will 1

be discussed in more detail later. 2

3

The analysis was repeated for many species. The SO2 results are shown in Figure 9. Shown 4

are regions dominated by coal use in the large cities in China, and areas impacted by the large 5

sulfur emissions from the Miyakejima volcano located south of Tokyo (Yoshino et al., 2003). It 6

should be noted that the absolute values of SO2 reconstructed using the aircraft observations in 7

this manner are low over China, because oxidation and deposition reduce its concentration as it 8

travels from the source region to the aircraft. Biomass emissions of SO2 are small compared to 9

CO, so SO2 levels in SE Asia are relatively low.  Large negative biases are again found in 10

Central China. Negative biases in this region were also found for many other species including 11

BC and ethyne. The large positive bias around Tokyo suggests that the emission estimates from 12

the Miyakejima volcano may be too large. The Miyakejima plume encountered by TRACE-P 13

flights is fresher than continental outflows, so this plume concentration tends to be less affected 14

by SO2 destruction and depositions comparing to the strong source. 15

16

3.4 Central China and Domestic Emissions 17

The above analysis suggests that emissions in central China may be under-estimated in the 18

current emissions. Additional insights can be found by using surface measurements in this 19

region. At the Lin’an surface measurement site (see Figure 1) CO, SO2, O3, NO, NOy, and 20

NMHC were measured for ~ 2 years, including during the period of TRACE-P (Wang et al.21

[2001, 2002]).  Lin’an persistently observed very high concentrations as shown in Table 3,22

where a summary of the calculated and observed surface values at Lin’an for the TRACE-P 23

period are presented. In the mean, the model underestimates CO by a factor of 2, and SO2 and 24

NOy by a factor of 3. However, the observed and model slopes of SO2/CO are quite consistent, 25

while the modeled SO2/NOy is 1.7 times higher than the observed value.  26

27

Errors in the inventory could be related to region-specific issues such as problems in activity 28

reporting, or inaccuracies in fuel characteristics (which we have no way of checking at this stage 29

of the analysis), or they may reflect a systematic problem within a given sector. The domestic 30

sector is a likely candidate, as its regional importance is focused in central China as shown in 31
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Figure 10. Further details regarding emissions from the domestic sector are presented in Table 1

4. As shown, the relative importance of biofuel and fossil fuel in the domestic sector changes by 2

species. BC is dominated by biofuel, CO is evenly split between fossil and biofuel, and SO2 is 3

dominated by fossil fuel usage. In central China the fossil fuel usage in the domestic sector is 4

dominated by coal. In the Streets et al. inventory, the energy scenario used for the year 2000 5

reflects the recent decline in coal usage and an improvement in the coal quality. The reasons for 6

these trends are discussed in detail in Streets et al., (2002). However, it is possible that these 7

positive changes did not extend equally across all sectors, and that the assumptions about the rate 8

at which the domestic sector was transformed to gas and electricity were too optimistic.  If one 9

assumes that the domestic sector usage of coal since 1995 did not change, then the domestic 10

sector emissions would be ~ double those used in the base-line TRACE-P inventory. 11

12

To investigate further the impact of the domestic sector on the calculated distributions, a new 13

simulation was performed in which the domestic sector emissions (only) were doubled. The 14

results are shown in Figure 11, and they show the intriguing feature that the largest increases in 15

concentrations occur preferentially over Central China, and in the Yellow Sea, in a latitude band 16

coincident to where the under predictions occur. The average changes in the Yellow Sea are ~ 17

30-40 ppb in the case of CO, but in specific outflow events can be 60 to 100 ppb (as shown for 18

DC-8 flight #9). In the case of BC, doubling the domestic-sector emissions resulted in increased 19

BC levels in the Yellow Sea by as much as a factor of 2.  Surface values of CO at Lin’an 20

increased by ~ 100ppb for the double domestic-sector simulation.   21

22

A doubling of the emissions moves the results in the right direction, but does not eliminate 23

the problems. Based on this analysis alone, the domestic sector would have to be increased by 3-24

5 times to reconcile the model results for CO with the observations. Clearly the domestic sector 25

emissions need further study.  26

27

The results presented here are consistent with a recent global CO inverse modeling study by 28

Kasibhatla et al. (2002). Their inversion using surface observations of CO identified the need for 29

significantly larger biomass (~100% higher), and biofuel and fossil fuel sources (~50% higher) 30

of CO in Asia. Specifically their a priori estimate of CO emission in Asia was ~310 Tg-CO per 31
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year (210 Tg from fossil and biofuels, and 100 Tg from biomass burning. Our base-line estimate 1

of CO emissions from 2000 was 278 Tg-CO (211 Tg from fossil and biofuels, and 67 Tg from 2

biomass burning). Their estimated emissions after inversion was ~350 Tg-CO from fossil and 3

biofuels. Our value based on doubling of the domestic sector is ~380 Tg-CO from fossil and 4

biofuel combustion.  Palmer et al. (this issue) performed an emissions inversion for CO using the 5

Trace-P aircraft observations. They recovered a posteriori emission value that was 30% higher 6

for China than used in their forward analysis. A result that is also consistent with that derived 7

here.8

9

3.5 Megacity Analysis10

As shown in Figure 7, and discussed previously, the aircraft when flying in the Yellow Sea 11

often measured very polluted air masses, in plume-like structures at altitudes below ~ 2km. It 12

was also shown (Figure 11) that the model was able to locate the plumes at the right location, 13

but usually under predicted the values.  Examining ratios, instead of single species, helps to 14

minimize effects that may be due to model resolution, or other model errors associated with 15

transport processes. For example, while the model may under-predict CO and propane in distinct 16

plumes, the model may predict accurately the CO to propane ratio. In this section this hypothesis 17

is tested and used to evaluate emission estimates from the largest Asian cities. Megacities were 18

chosen for analysis as they have clear regional differences (as shown in Figure 3), their 19

estimated emission and underlying activity data are better characterized, and they provide 20

ambient concentrations that are well above background levels, making them easier to detect. 21

22

The analysis of ratios was performed by first classifying the observations according to the 23

megacity (as shown in Figure 3), and then calculating the ratios of selected species by regressing 24

one species against the other. The analysis was further refined by regressing only data points of a 25

specific age. In the case of emission estimates we assume that air masses younger than 1-day 26

have the strongest emission signatures and the least uncertainty in the trajectories. This analysis 27

was performed using the observational data and repeated for the modeled data. Sample results 28

are shown in Figure 12. Shown in these plots are the observed and modeled values for all 29

measurement points classified to be influenced by emissions from Shanghai within 24 hours of 30

being sampled by the aircraft. The values were then analyzed as shown. All different 31
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combinations of pairs of species were plotted to determine their relationships. For example, 1

observed C3H8 plotted against observed CO is shown in Figure 12. Also shown is the regression 2

of modeled C3H8 with modeled CO. The slopes for observed and modeled values (∆C3H8/∆CO) 3

along with r2 values are presented in Tables 5 and 6, and are used in subsequent discussions. 4

The idea is that if observed and modeled ratios are the same, then this implies that the emission 5

ratios in the inventory are correct.  6

7

8

3.5.1 Shanghai9

A summary of calculated ratios for Shanghai is presented in Table 5, which is based on 10

80km grid analysis. As discussed above, while both CO and propane are systematically under-11

predicted at very high values, the calculated ratio is within ~10% of the observed ratio. Many of 12

the model derived ratios fall within ~25% of those observed, and all fall within a factor of 2.5. 13

The ∆HCHO/∆CO ratio is influenced more by the photochemical processes than by the ratio in 14

the primary emissions.  The coefficients of determination (i.e., r2) are also shown. In most cases 15

the model-based analysis show higher r2 values than the observation-based analysis, reflecting 16

that collectively the model system (emissions, resolution, transport, chemistry, removal) does not 17

represent all of the variability in the atmosphere, and the fact that the classification scheme is 18

based on the modeled winds, which are the same winds used in the forward model simulations.19

20

To explore the sensitivity of the analysis to some of the key factors, the analysis was repeated 21

using the results from a fine-grid STEM-2K1 calculation (i.e., 16 km grids). In general the 22

results differed by at most +/- 25% (e.g., the 16km value of ∆SO2/∆CO for the Shanghai plumes 23

was 0.015 (r2 =0.52) for the observation-based analysis, and 0.017 (r2 =0.40) for the model-based 24

analysis).  The results were also repeated for different air mass ages. For ratios of species that are 25

not very reactive (e.g., ∆BC/∆CO) the results were insensitive (less than 5% difference) to air 26

mass age.  27

28

The emission ratios estimated from the inventory for Shanghai are also shown in Table 5.29

For the low reactive species, the ratios are consistent with those derived from the observations 30

(e.g., ∆BC/∆CO, ∆C2H6/∆CO, ∆C2H2/∆CO). Since there are many sources of uncertainty in the 31
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model that influence the relationship between emissions and subsequent trace gas distributions, 1

disagreement does not automatically imply inaccuracies in emissions. For example, ratios will 2

change over time if the chemical reaction rates of the species are different.  To illustrate, for the 3

Shanghai plumes, both the observation- and model-based analysis produce a value of 4

∆Ethane/∆Ethene of  ~ 1-1.3, while the emission estimate yields a value of 0.33. Ethene reacts 5

faster than ethane with OH, and by this processes values of ∆Ethane/∆Ethene increase with 6

travel time (consistent with the analysis). BC and CO are relatively long-lived species from 7

chemical and removal perspectives, and their analyzed ratios are close to the emission ratio.  8

9

The analysis was also repeated for the double-domestic sector emissions scenario. Selected 10

results for Shanghai are shown in Table 5. In general the regressions became stronger in the 11

model and the results closer to the observations. The most important results are for the 12

∆C2H2/∆CO and ∆SOx/∆C2H2 values, which show that the domestic sector preferentially 13

increases ethyne relative to CO and to SOx, producing results much closer to the observations. 14

15

3.5.2 All megacities16

A summary of estimated ratios for all cities with more than 25 data points is presented in 17

Table 6, and the emission ratios are presented in Table 7. The results for these cities are similar 18

to those discussed for Shanghai, so a city-by-city discussion is not presented. Comparing 19

measured and modeled ratios, some clear trends are observed that reflect regional differences, 20

and that are consistent with the estimated emissions. One example is the ∆BC/∆CO values. The 21

highest values are retrieved for Tokyo (0.017) and Seoul (0.014), with the Chinese cities having 22

lower values (0.011). These values are consistent with the estimated BC and CO emissions. In 23

addition, the propane/benzene and nitrogen-oxides/sulfur-oxides values are much higher for 24

Seoul, Pusan and Tokyo, than in the Chinese cities, while the opposite is true for the sulfur-25

oxides/ethyne values.  These trends reflect lower sulfur dioxide and higher nitrogen oxide 26

emissions in Seoul, Pusan and Tokyo, associated with a larger role of the transportation sector, 27

and a lesser dependence on coal in these cities.  28

29

There is also a general consistency between the observed and modeled ratios for ∆BC/∆CO, 30

∆SOx/∆C2H2, and ∆C2H6/∆C2H4. Furthermore, the north-central China cities of Tianjin, Beijing, 31
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Qingdao have ratios that are very similar to each other, but different than those for Shanghai. For 1

all of the ratios involving CO in the denominator, the model-derived values are 2 – 3 times larger 2

than the observation-derived values for these north-central Chinese cities. This is not the case for 3

ratios involving ethyne. For example there is good agreement between the observed and modeled 4

∆SOx/∆C2H2 values for this region.   5

6

This analysis shows interesting features regarding sulfur emissions around Tokyo. As shown 7

in the Table 6, all the analyzed ratios involving sulfur (observed and model) for Tokyo show 8

negative slopes and low correlations. This is due to the large impact of sulfur emissions from the 9

Miyakejima volcano. These emissions do not contain NMHC or NOx or CO. This illustrates how 10

this analysis can help identify source types.   11

12

4. Summary 13

14

In this paper we explored various ways in which measurements made during the NASA 15

TRACE-P experiment could be used in conjunction with regional modeling analysis to evaluate 16

emission estimates for Asia. The first evaluation involved comparisons between the modeled 17

values and the aircraft observations. Based on this analysis we conclude that the inventory 18

performs well for the light alkanes, CO, ethyne, SO2, NOx. Furthermore, the model was shown to 19

have skill in predicting important photochemical species such as O3, HCHO, OH, HO2, and 20

HNO3. These results indicate that the emissions inventories are of sufficient quality to support 21

modeling studies of photochemistry. These are important finding in light of the fact that emission 22

estimates for many species (such as speciated NMHCs and BC) for this region have only 23

recently been estimated and are highly uncertain.   24

25

We further explored how the observations could be classified using back-trajectory analysis. 26

Using a classification of the measurements built upon trajectory analysis, we compared observed 27

species distributions, and ratios of species, to those modeled, and to ratios estimated from the 28

emissions inventory. It was shown that this technique could reconstruct a spatial distribution of 29

propane/benzene that looks remarkably similar to that calculated from the emissions inventory. 30

This analysis works best using ratios of species with similar chemical reaction loss rates with 31
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respect to OH, and that have some degree of spatial homogeneity within regions, as mixing 1

effects as well as differences in reaction rates, result in changes in the ratio along the trajectory.  2

3

A major discrepancy between modeled and observed behavior was found over the Yellow 4

Sea, where modeled values were systematically under-predicted. The integrated analysis 5

suggests that this may be related to an under-estimation of emissions from the domestic sector. A 6

sensitivity calculation using doubled domestic sector emissions showed that emissions from this 7

sector have a large influence on trace species concentrations over central China and in the Yellow 8

Sea. Based on this analysis alone, the domestic sector would have to be increased by 3-5 times to 9

reconcile the model results for CO with the observations. This result is consistent with recent 10

results from formal inversions using global models. Clearly the domestic sector emissions need 11

further study. 12

13

The emissions were further tested by comparing observed and measured species ratios in 14

identified megacity plumes. Many of the model derived ratios (e.g., ∆BC/∆CO, ∆SOx/∆C2H2)15

were shown to fall within ~25% of those observed, and only ∆C2H6/∆C2H2, ∆HCHO/∆CO, and 16

∆NOx/∆CO differed by more than a factor of 2. The analysis of the observations for different 17

cities detected regional differences, which reflect the lower sulfur dioxide and higher nitrogen 18

oxide emissions in Seoul, Pusan and Tokyo, associated with a larger role of the transportation 19

sector, and a lesser dependence on coal in these cities. Furthermore, the north-central China cities 20

of Tianjin, Beijing, Qingdao were found to have ratios that were very similar to each other, but 21

different than those for Shanghai. The analysis was also able to detect the presence of a large 22

sulfur source that did not emit CO, NOx or NMHC. This was obviously due to emissions from 23

the Miyakejima volcano, but demonstrates the potential to detect unknown sources. 24

25

The results presented illustrate how measurements obtained during the NASA TRACE-P 26

experiment, when integrated with modeling analysis, provide a means to evaluate the quality of 27

emission estimates. Clearly there is a wealth of information contained in such analysis, and more 28

work is needed along this line of merging emissions with observation- and model-based analysis. 29

In the future it is recommended that emissions testing play an even larger role in large-scale 30

experiments. Furthermore, the above analysis has focused largely on the use of trace gas 31
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emissions and measurements. What is needed to make this analysis more powerful is to extend 1

this information using aerosol composition. Techniques, such as single particle analysis, are well 2

suited for this use as they can provide more specific source profiles (e.g., distinguish coal from 3

biofuel, and anthropogenic dust – fly ash and cement manufacturing from wind blow soils). In 4

addition it is possible to use the observation-based analysis to improve emission estimates. The 5

observed ratios for specific megacities and regions, could be used in a regional inversion 6

methodology to revise the bottom-up emission inventory.  This methodology could also be used 7

directly to construct a regional inventory. We are presently exploring these techniques to create a 8

mercury emissions inventory using observations from the Ace-Asia experiment.  9

10
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Table 1. Observed and STEM-simulated mean values and correlation coefficients (R) for 
TRACE-P DC-8 flights #6 to #17 and P-3 flights #8 to #19 for flight altitudes below 2 km. 
Analysis based on ~300 data points for DC-8 flights and  ~465 for P-3 flights. 

 DC-8 Flights #6 - #17 P3 Flights #8 - #19 
Chemical Species Observed Modeled  R Observed Modeled R 

CO (ppbv) 219 203 0.73 229 219 0.68 
O3 (ppbv) 51 52 0.80 55 56 0.88 

Ethane (ppbv) 2.0 1.6 0.88 2.0 1.7 0.68 
Propane (ppbv) 0.62 0.46 0.81 0.65 0.50 0.62 
Ethyne (ppbv) 0.78 0.63 0.69 0.74 0.67 0.62 
Ethene (ppbv) 0.18 0.20 0.61 0.14 0.13 0.52 

SO2 (ppbv) 1.55 1.04 0.43 1.6 2.5 0.77 
NO2 (ppbv) 0.27 0.25 0.24 0.52 0.41 0.23 
NO (ppbv) 0.035 0.041 0.22 0.080 0.078 0.11 

HNO3 (ppbv) 0.61 0.73 0.74 0.35 0.90 0.22 
OH (pptv) 0.11 0.11 0.75 0.21 0.13 0.59 
HO2 (pptv) 10.8 10.9 0.79 15.5 12.6 0.66 

Benzene + Toluene (ppbv) 0.33 0.19 0.64 0.28 0.15 0.41 
HCHO (ppbv) 0.60 0.59 0.68 N/A N/A N/A 
BC (ug/std m3) 0.84 0.67 0.65 N/A N/A N/A 
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Table 2. Emission factor ratios (mass basis) for various source sectors. For example, for the 
transport sector there is 270 times more CO emitted than benzene.  

Emission Factor Ratios (full MW basis) 
 Biomass 

Burning 
(SE Asia)1

Biomass 
Burning 

(local/China)2

Biofuel 
Use3

Industry 
and Power4

Domestic 
(coal, oil, and 

biofuel)5
Transport6

CO  693  657  289  61  652  270 
SO2  3.8  2.9  1  103  26  7.5 
Ethane  8  6.9  4.4  1.5  1  1.1 
Propane  1  3.7  1.9  2  2.8  2.2 
Ethene  13  10  6.7  1  19  5.5 
Benzene  2.7  1  7  1.4  8.8  1 
The emission factor ratios are estimated across all of Asia, except where indicated (biomass 
burning).  Values calculated by taking the ratios of emission factors (e.g., for biomass burning 
[CO-emitted/kg fuel burned]/[Propane-emitted/kg-fuel burned] 

1  Based on Andreae and Merlet for tropical forests – good for Southeast Asia forest burning. 
2 Based on Andreae and Merlet for agricultural waste burning – good for local burning in 

China, such as Lin’an. 
3 Based on Andreae and Merlet for biofuel burning – good for local biofuel use in China. 
4 Based on total emissions for power plants and industrial facilities (combined). 
5 Includes all residential activities from all fuel types, paints, and solvents. 
6 Includes all fuel combustion by vehicles, but not refineries, etc. 

Table 3. Observed and calculated values at the Lin’an surface site for March 2001.  

Species and Variables Observed Simulated 
Mean CO (ppbv) 650 316 
Mean SO2 (ppbv) 16.5 5.2 
Mean NOy (ppbv) 13.2 4.1 

Regression line of SO2 vs CO* Y = 0.018 * X + 4.8 Y = 0.0178 * X – 0.3 
Regression line of NOy vs CO Y = 0.021 * X - 0.33 Y = 0.014 * X – 0.4 

Regression line of SO2  vs NOy* Y = 0.9 * X + 5.1 Y = 1.4 * X - 0.7 
* correlation coefficients r2 are low (<0.2) 
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Table 4. Domestic sector emissions by fuel for 2000 (annual basis, for the domain of Figure 
5).

Domestic sector 
Chemical Species 

Fossil Biofuel Sum 
% of Domestic  

to Total Emisisons 

SO2(Gg) 2549 1116 3665 11 

NOx(Gg) 795 1098 1893 7 

CO(Gg) 8899 95721 104620 38 

CO2(Tg) 552 2132 2684 27 

BC(Gg) 337 1294 1631 64 

OC(Gg) 273 6473 6746 65 

Table 5. Estimated ratios of selected species for data points identified as Shanghai plumes 
for air mass ages less than 1 day based on the 80km grid analysis. Results determined from 
calculations using base emissions and for doubled domestic sector emissions are shown. 
Ratios determined from the base-emissions are also presented.  

∆X/∆Y Observed Modeled 2* Domestic Emissions 
(base-case) 

∆BC/∆CO 0.011   (0.80)# 0.010   (0.98) 0.012    (0.99) 0.008 
∆BC/∆SO2 0.48     (0.90) 0.38     (0.52) 0.55      (0.61) 0.07 

∆HCHO/∆CO 0.011   (0.70) 0.006   (0.80) 0.006    (0.85) 0.002 
∆C2H6/∆CO 0.004   (0.71) 0.006   (0.86) 0.007    (0.92) 0.004 

∆C2H6/∆C2H2 0.39     (0.62) 1.14     (0.96) 1.03      (0.98) 0.66 
∆C2H6/∆C2H4 0.96     (0.59) 1.32     (0.53) 1.22      (0.73) 0.33 
∆SOx/∆C2H2 3.71     (0.77) 5.69     (0.76) 3.64      (0.76) 17.6 
∆NOy/∆SOx 0.35     (0.92) 0.88     (0.91) 0.85      (0.90) 1.0 
∆C3H8/∆CO 0.0027 (0.65) 0.0023 (0.84) 0.0031  (0.89) 0.005 
∆C2H2/∆CO 0.0076 (0.76) 0.0051 (0.88) 0.0067  (0.92) 0.0063 

∆C2H6/∆C3H8 1.19     (0.85) 2.51     (0.98) 2.23      (0.98) 0.81 
∆SO2/∆CO 0.0187  (0.61) 0.0144  (0.55) 0.0129   (0.60) 0.11 

#- numbers in parenthesis represent r2 values
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Table 7. Ratios (molar) of various species determined from the emission 
estimates for the cities analyzed.  

Seoul-
Inchon Pusan Tokyo Shanghai Hong

Kong Tianjin Beijing Qingdao

HCHO/CO 0.0122 0.0029 0.0037 0.0023 0.0097 0.0024 0.0024 0.0026 
HCHO/C2H2 1.49 0.94 1.12 0.36 1.48 0.38 0.35 0.28 

C2H6/CO 0.009 0.003 0.005 0.004 0.012 0.005 0.004 0.005 
C2H6/C2H4 0.50 0.42 0.45 0.33 0.54 0.64 0.48 0.51 
C2H6/C2H2 1.13 0.98 1.63 0.66 1.76 0.79 0.59 0.53 
C3H8/CO 0.010 0.003 0.005 0.005 0.011 0.006 0.005 0.006 

C3H8/benzene 5.21 3.06 5.90 3.98 5.25 6.21 5.21 6.43 
BC/SO2 0.13 0.23 0.44 0.07 0.05 0.11 0.11 0.07 
BC/CO 0.03 0.01 0.02 0.01 0.01 0.01 0.01 0.01 

NOy/CO 0.42 0.19 0.21 0.11 0.72 0.10 0.05 0.11 
NOy/SOx 2.0 3.0 5.3 1.0 2.7 0.9 0.9 0.6 
SOx/CO 0.21 0.06 0.04 0.11 0.27 0.11 0.06 0.20 

SOx/C2H2 25.1 20.2 12.1 17.6 40.5 17.1 8.8 22.0 
C2H2/CO 0.0082 0.0031 0.0033 0.0063 0.0066 0.0064 0.0069 0.0092 

C2H6/C3H8 0.91 1.18 0.97 0.81 1.05 0.89 0.82 0.81 



28

Figure captions: 

Figure 1. Domain used in the emissions and modeling analysis. Also shown are the locations of 

the megacities and the Miyakejima volcano. Emission ratios (molar) for a variety of species used 

in the analysis for Shanghai, Tokyo and Qingdao are also shown.   

Figure 2. Trajectory statistics for 5-day back-trajectories calculated for every 5-minute flight 

segment along the 12 DC-8 (March 4 to April 1) and 12 P-3B (March 4 to April 2) flights. 

Shown are the number of times the back-trajectories passed over each 1ox1o grid cells below 1.5 

km (a), between 1.5 and 3 km (b), over 3 km (c). Sample trajectories are shown in (d), which 

include ~2200 trajectories. 

Figure 3. Trajectory statistics for 5-day back-trajectories calculated for every 5-minute flight 

segment along the 12 DC-8 and 12 P-3B flights. Shown are the number of times the back-

trajectories passed over selected megacities at altitudes below 2 km, classified by the age of the 

air mass (days). Emission ratios (molar) for a variety of species used in the analysis for 

Shanghai, Tokyo and Qingdao are also shown.   

Figure 4. The regional distribution of propane to benzene ratio (molar) determined from the 

emissions inventory (a) and by back-trajectory analysis using the ratios observed onboard the 

aircrafts in all flights (b).  

Figure 5. The regional distribution of ethane to propane ratios (molar) determined from the 

emissions inventory.  

Figure 6. Observed and modeled relation between ethane to propane for the 5-minute segments 

of the P-3B and DC-8 flights. Colored arrows show emission ratio for various sources categories. 

Figure 7. Modeled and observed CO for the DC-8 and P-3B flights (5-minute merged data set). 

The red points indicate data points for which back-trajectories were calculated. The trajectories 
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for the points with CO > 500ppb are shown (left) and color-coded according to measured CO 

values.

Figure 8. Mission-averaged distributions of CO. Averaged values of aircraft observation for 

altitudes below 2 km (a); model calculated values for all day-time points in the month of March 

for altitudes below 2 km (b); average distribution below 2 km reconstructed using the aircraft 

observed values and back-trajectory analysis (c); and mean monthly bias below 2 km between 

the reconstructed distribution based on the observations and the distribution reconstructed using 

the modeled values along the flight path (d). All values are in ppbv.  

Figure 9. Mission-averaged average distribution of SO2 below 2 km reconstructed using the 

aircraft observed values and back-trajectory analysis (upper); and mean monthly bias between 

the reconstructed distribution based on the observations and the distribution reconstructed using 

the modeled values along the flight path. All values are in ppbv.  

Figure 10. The regional distribution of the contribution of domestic sector emissions of CO and 

BC expressed as percentage of total emissions.  

Figure 11. Results from sensitivity simulations using doubled domestic sector emissions. 

Monthly mean percentage change in near surface CO and BC levels for Asia (right) and along 

DC-8 flight #9. Flight track is shown. 

Figure 12.  Examples of regression analysis of various species using aircraft observations 

identified to have encountered Shanghai air masses less than 1 day old (blue). Also shown are 

values estimated using modeled values for these same data points (pink). 
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